
© 2010 Carnegie Mellon University

Managing Software Quality with

the Team Software Process

James W. Over

April 13, 2010

2
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Key Message

Society depends on software.

As software professionals we have an obligation to produce reliable,
secure software.

The methods exist to achieve this goal, but they aren’t widely used.

Software quality professionals should help shift the profession from its
ad-hoc, ―test-in quality‖ mindset, towards a measured, disciplined,
―build-in quality‖ approach.

3
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Team Software Process (TSP)

TSP is a process that is specifically designed for

software teams.

It’s purpose is to help teams

• plan their work

• negotiate their commitments with management

• manage and track projects to a successful

conclusion

• produce quality products in less time

• achieve their best performance without the ―death

march‖ ending

4
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

TSP Quality Improvements at Microsoft

Background information

• two consecutive releases of

the same system

• same six month schedule

• same seven member team

• similar functionality produced

• TSP used on release 2.5

Post code complete defects

Phase
Version

2.4

Version

2.5

Integration

Test
237 4

System Test 473 10

User

Acceptance

Test

153 3

Total 1072 17

5
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Quality Improvement at Intuit

From data on over 40 TSP teams, Intuit has found that

• sixty percent fewer defects after code-complete

• post code-complete effort is 8% instead of 33% of the project

• standard test times are cut from 4 months to 1 month or less

Development

Development Test

Test Non-TSP

TSP

Source: Intuit

6
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Quality and Work-Life Balance

Finding and retaining good people is critical to long-term success.

Intuit found that TSP improved work-life balance, a key factor in job

satisfaction.

Source: Intuit

Source: Intuit

7
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

0

1

2

3

4

5

6

7

8

CMM
Level 1

CMM
Level 2

CMM
Level 3

CMM
Level 4

CMM
Level 5

TSP

Defects
per KLOC

7.5 6.24 4.73 2.28 1.05 0.06

Average Defect Density of Delivered Software

TSP Quality Performance

In a study of 20 projects in 13 organizations TSP teams averaged 0.06 defects per thousand

lines of new or modified code.

Source: CMU/SEI-2003-TR-014

8
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?

What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality

throughout development and testing?

What data should teams collect?

• How is the data used by development teams and QA?

• What leading indicators can be used to identify quality problems early in

development?

9
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Software Industry Quality Performance

The quality of software products is worse than

most other hi-tech products.

Many important software products have 1 to 2

defects per thousand lines of code, or higher.

• operating systems

• communications systems

• database systems

Application software is usually worse.
Depicted above: Linux system crash

screen on an Airbus entertainment

system

10
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Software Industry Quality Strategy

The software industry is the only modern high-tech industry that relies

heavily on testing to remove defects.

Many software defects are found in or after test when defect removal

costs are the highest and the methods are the least effective.

This strategy results in defective products and unnecessary rework that

inflates development costs by 30% to 40% or more.

This strategy is also a principal cause of unexpected delays, system

failures, and software security vulnerabilities.

11
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Software Quality Practice

Formal inspections are not widely used.

• Peer review by another developer is the most common review practice

• Often only the ―critical‖ code is reviewed or inspected.

• Inspections aren’t measured or managed to improve effectiveness.

Quantitative quality management is not common practice.

• Quality plans are generally qualitative not quantitative.

• Defects generally aren’t counted before test or code inspection.

• Quality cannot be managed or tracked before testing begins due to a

lack of plans and data.

12
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

To Engineer is Human*

Software engineering is the art of turning

ambiguous requirements into precise instructions.

On average, most software developers inject one

defect in every 7 to 12 lines of code.

Typically 20% to 25% of these defects escape into

system testing where they will take 1 to 2 days each

to find and fix.

* To Engineer is Human: The Role of Failure in Successful Design, by Henry

Petroski.

13
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

The Risk of Poor Quality

Computers are involved in nearly every

aspect of our lives.

While computers are very reliable, software

is not.

The risk of loss of life or property is

increasing due to software in

• medical and healthcare systems

• financial systems

• network and communications systems

• aircraft and air traffic control systems

• power generation and distribution

systems

"If GM had kept up with technology

like the computer industry has, we

would all be driving twenty-five

dollar cars that got 1,000 miles to

the gallon.“ – Bill Gates

"If GM had developed technology

like Microsoft, we would all be

driving cars …that for no reason

whatsoever would crash twice a

day“ – General Motors

14
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

The Cost of Poor Quality

Without reviews or inspections a 50,000

LOC system has

• 20+ defects/KLOC at test entry

• that is 1000+ defects

• at the typical 10+ hours per defect,

that is 10,000+ programmer hours to

find and fix

The cost of removing these defects is

about 5 programmer years, or nearly

half the cost of developing 50,000 LOC.

15
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Why Testing Isn’t Enough

Overload

Hardware
failure

Operator
error

Data error

Resource
contention

Configuration

Tested – paths in

the safe region

(shaded green)

Untested – paths in

the unsafe region

(shaded red)

System
attack

Unexpected
condition

16
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Software Quality Management

IBM’s Dr. Harlan Mills said, ―How do you know that you’ve found the last
defect in system test?”

“You never find the first one.”

If you want a quality product out of test, you must put a quality product into
test.

How do you put a quality product into test?

Measure and manage quality at every step, from requirements through
system test.

17
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Early Defect Removal Strategy

0

100

200

300

400

500

600

700

800

900

1000

Requirements
Inspection

Design Review
and Inspection

Code Review
and Inspection

Unit Test System Test

Defects Removed in Phase

18
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?

What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality

throughout development and testing?

What data should teams collect?

• How is the data used by development teams and QA?

• What leading indicators can be used to identify quality problems early in

development?

19
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Commitment to Quality

―The system test engineers became

convinced that TSP was worthwhile when

they realized that they were going from

tracking down software bugs in the lab to

just confirming functionality. Our first

project: certified with ten times increase in

quality with significant drop in cost to

develop. Follow-on project: certified with

NO software defects delivered to system

test or customer.‖
―My first TSP-based team recently

finished their system test. They had

three system test defects in 7400 lines of

new code. No defects were code- or

design-related; they were either install or

documentation— each of which took

about five minutes to fix. System test

took less than five percent of the overall

project effort.‖

20
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Catch-22

To use new methods, software professionals must believe the methods

will help them do better work.

To believe that, they must have used the methods.

To break this conundrum, TSP has a course where professionals

• use new methods to write several small programs

• plan, measure, track, and analyze their work

They then learn from their own data that the new methods work.

21
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Learning to Develop Software

In computer science and software engineering education,

• the emphasis is on technical knowledge and individual performance.

• evaluation emphasizes code that runs, not how the student got there.

• the prevailing ethic is to code quickly and fix the problems in test.

Developers then use these same practices on the job resulting in

• missed commitments

• lengthy testing schedules

• buggy software

22
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Personal Software Process

The PSP is a process for structured personal tasks.

Developers learn PSP in a hands-on course where they use a defined and
measured process to estimate, plan, track, and manage quality.

This leads to

• better estimating, planning, and tracking

• protection against over-commitment

• a personal commitment to quality

The training provides the self-convincing evidence of the benefits that
developers need to use these methods in practice.

23
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

PSP Learning Stages

Developers write one or more programs at each PSP level

PSP0
•Current process
•Basic measures

PSP1
•Size estimating
•Test report

PSP2
•Code reviews
•Design reviews

Team Software
Process
•Teambuilding
•Risk management
•Project planning and tracking

PSP2.1
Design templates

PSP1.1
•Task planning

• Schedule planning

PSP0.1
•Coding standard

•Process improvement proposal

•Size measurement

Introduces process discipline
and measurement

Introduces estimating and
planning

Introduces quality
management and design

24
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

PSP 0

PSP 1

PSP 2

Effort Estimation Accuracy

100%0%-100%-200% 100%0%-100%-200%

0

20

40

0

20

40

100%0%-100%-200% 100%0%-100%-200%

0

20

40

0

20

40

100%0%-100%-200% 100%0%-100%-200%

0

20

40

0

20

40

PSP Effort Estimating Accuracy

Majority are under-estimating

Balance of over-estimates and under-
estimates

Much tighter balance around zero

25
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Compile and Test Defects - from PSP Training

0

50

100

150

200

250

P
ro

g1

P
ro

g2

P
ro

g3

P
ro

g4

P
ro

g5

P
ro

g6

P
ro

g7

P
ro

g8

P
ro

g9

P
ro

g1
0

PSP Assignment Number

D
e
fe

ct
s
/K

L
O

C

1st Quartile

2nd Quartile

3rd Quartile

4th Quartile

810 developers

Defect

reduction

1Q: 80.4%
2Q: 79.0%
3Q: 78.5%
4Q: 77.6%

26
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

PSP Design Time Results

11109876543210

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Design

Code

Compile

Test

Time Invested Per (New and Changed) Line of Code

Program Number

M
e

a
n

 M
in

u
te

s
 S

p
e
n

t
P

e
r

L
O

C

298 developersPSP0

PSP1 PSP2

27
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Quality and the Team

Quality doesn’t happen by accident.

Quality software is possible only when every member of a development
team makes a personal commitment.

To build a high-quality product they must

• be properly trained and motivated

• understand their personal quality data

• have control of their process and plans

• have the proper data to track quality

28
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?

What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality

throughout development and testing?

What data should teams collect?

• How is the data used by development teams and QA?

• What leading indicators can be used to identify quality problems early in

development?

29
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Building Quality Products

PSP

Self-directed
teams

Coaching

Accurate
pans

Measurement

Quality
practices

30
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Management Styles

The principal management styles have been:

Knowledge management

People as individuals. The

knowledge worker knows the

best way to get the work

done. Management

motivates, leads, and

coaches.

Body Management

People as oxen that must

be driven, directed, and

motivated through fear.

Task Management

People as machines.

Management knows the

best way to get the work

done. The workers

follow.

Frederick Taylor Peter Drucker

31
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Software Team Management Styles

Traditional team
The leader plans, directs, and

tracks the team’s work.

TM TM TM TM

TL

TMTM TM TM

Self-directed team
The team members participate in

planning, managing, and tracking their

own work.

TM

TM TM

TL

TM

TSP

Coach

TM TM

TM TM

32
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Sharing the Team Management
Responsibilities

Project Management Roles

Planning manager – responsible for tracking the plan.

Quality manager – responsible for tracking the quality plan.

Process manager – responsible for ensuring process discipline

and for process improvement.

Support manager – responsible for ensuring that support

needs are met and for configuration management.

Technical Roles

Customer interface manager – responsible for the interface to

the customer or customer representative.

Design manager – responsible for the design practices and

quality.

Implementation manager – responsible for implementation

practices and quality.

Test manager – responsible for test practices and quality.

TM

CIF SM

PLM

Self-directed team roles

Eight pre-defined roles distribute traditional

project management responsibilities across the

team.

All team members have traditional roles, e.g.

developer, tester, etc.

TSP

Coach

IM QM

DM PRM

33
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

The Coaching Role

The coach

• trains and facilitates the adoption of team-based practices

• works with the team leader to build the team

• observer that uses data to guide the team

Team Leader vs. Coach

The team leader’s job is to use the

team to build the product.

The coaches job is to use the project

to build the team.

Tiger Woods and his coach Hank Haney.

34
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Working Together to Improve Product Quality

High Quality Products

Role
Mangers

Coach

QA

35
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Planning Accuracy and Quality

Most software projects are underestimated and are therefore late

before they start.

When projects are running behind schedule, managers and developers

will abandon the process and look for shortcuts.

• hurry through design

• code quickly and deliver to test

• rush through test and fix only the most critical bugs

Without reasonably accurate plans, quality suffers.

36
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

36

Guidelines for Improving Plan Accuracy

Create a conceptual design as the basis for the estimate.

Estimate size first, then effort, to reduce estimating bias.

Use historical data for size and effort estimates to further reduce bias.

Estimate in detail to further reduce cumulative error.

Use historical data to estimate resource availability.

Make and use a quantitative quality plan to reduce the risk of schedule

delays caused by ―buggy‖ software.

Do workload balancing.

Good plans are dynamic, plan early and often.

The best plans are made by the people assigned to do the work.

37
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Self-directed Team Planning: The TSP Launch
Process

The TSP launch process produces

necessary planning artifacts, e.g. goals,

roles, estimates, task plan, milestones,

quality plan, risk mitigation plan, etc.

The most important outcome is a

committed team.

1. Establish

Product and

Business

Goals

2. Assign Roles

and Define

Team Goals

4. Build Top-

down and

Next-Phase

Plans

5. Develop

the Quality

Plan

6. Build Bottom-

up and

Consolidated

Plans

7. Conduct

Risk

Assessment

8. Prepare

Management

Briefing and

Launch Report

Launch

Postmortem

9. Hold

Management

Review

3. Produce

Development

Strategy

38
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

TSP Quality Management Practices

TSP incorporates several quality management practices

• planning for quality

• yield management

• capture/recapture

• defect prevention

Quality is measured and tracked throughout the process.

39
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Quality Planning

Quality guidelines are used during

TSP planning to

• estimate defects injected

• make a plan for their removal

Estimates are based on historical

defect densities or, injection rates and

phase yields.

Quality indicators are then calculated

from these data and used to track plan

vs. actual quality during execution.

Quality Guideline Benchmark Value

Review rate 200 LOC/Hr.

Design injection rate 0.75/Hr.

Design review removal rate 1.5/Hr.

Design inspection removal rate 0.5/Hr.

Design review/inspection yield 70%

Code injection rate 2/Hr.

Code review removal rate 4/Hr.

Code inspection removal rate 1/Hr.

Code review/inspection yield 70%

Unit test removal rate 3/Hr.

Unit test yield 50%

Expected defect density

Unit Test

Integration Test

System Test

Acceptance Test

< 5/KLOC

< 0.5/KLOC

< 0.2/KLOC

< 0.1/KLOC

40
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Yield Management

Every process phase has the potential to inject new defects.

There are many techniques for finding and fixing these defects.

• walkthroughs, reviews, and inspections

• manual and automated testing tools

Think of these techniques as defect removal filters

The cleanest software is produced by using multiple filters.

• test-only process yield: less than 99%

• multi-stage defect filter process yield: 99.9% to 100%

41
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Static

Analysis

(optional)

TSP Process with Defect Removal Filters

Requirements
Launch

Produce

Requirements

Specifications

Inspection

Postmortem

Produce

High-Level

Design

System Test
Launch

Postmortem

Implementation
Launch

Produce

Detail Design

Produce

Technical

Artifacts (Code)

Postmortem

High-Level
Design Launch

Inspection

Postmortem

Personal

Review

Inspection

Personal

Review

Unit

Test

Inspection

System

Build

Integration

Test

System

Test

Requirements
High-Level

Design
Implementation System Test

Defect

Removal

Filter

42
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Capture-Recapture

The capture-recapture method

uses sampled data to estimate

populations.

It can be used to estimate the

defects in a product.

A

B

C

A = Defects in test A

B = Defects in test B

C = Defects common to A and B

Est. total defects = A*B/C

Total found = A+B-C

Est. total remaining = A*B/C – (A+B-C)

43
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

System Test and Defect Prevention

What is the typical response when a defect is found in system test?

• The defect is reported.

• Someone is assigned to find and fix it.

• When fixed the module is checked back in for testing.

System test yields are low (~50%), so system test defects get special

treatment in the TSP.

• Every defective module is re-inspected.

• A defect prevention process is invoked if defects are found during or

after system test.

• Each defect is analyzed to prevent future escapes.

44
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?

What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality

throughout development and testing?

What data should teams collect?

• How is the data used by development teams and QA?

• What leading indicators can be used to identify quality problems early in

development?

45
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

The TSP Measurement Framework

Four direct measures apply to all

processes and products

Estimates made during planning

Directly measured by team members

while working

The data are used to track project

status and to analyze and improve

performance.

Direct measures, integrated into a

measurement framework, provide

flexibility.

Size

Schedule

Quality

Effort

Source: CMU/SEI-92-TR-019

46
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Schedule

Schedule is the most commonly used project measure.

Schedule accuracy depends on granularity.

TSP schedule granularity is in hours, not days, weeks, or

months.

47
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Time

Time is a measure of time on task.

The TSP time measure is task hours,

i.e. the time spent on a project task,

minus interruption time.

TSP team members record their time

as they work, not at the end of the

day, week, or month.

48
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Size

Size is a measure of the magnitude of the

deliverable, e.g. lines of code or function points,

pages.

TSP size measures are selected based on their

correlation with time.

TSP also uses size data to

• normalize other measures

• track progress

49
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Defects

Defects are the measure of quality in the TSP.

Any change to an interim or final work product, made

to ensure proper design, implementation, test, use,

or maintenance, is a defect in the TSP.

Defects are logged as they

are found and fixed.

Defect tracking takes place

throughout the process.

50
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

What the Measurement Framework Provides…

Sample of Derived Measures

Estimation accuracy (size/time)

Prediction intervals (size/time)

Time in phase distribution

Defect injection phase distribution

Defect removal phase distribution

Productivity

%Reuse

%New Reusable

Cost performance index

Planned value

Earned value

Predicted earned value

Defect density

Sample of Derived Measures (continued)

Defect density by phase

Defect removal rate by phase

Defect removal leverage

Review rates

Process yield

Phase yield

Failure cost of quality

Appraisal cost of quality

Appraisal/Failure COQ ratio

Percent defect free

Defect removal profiles

Quality profile

Quality profile index

51
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Quality Summary -1

TSP form SUMQ displays key plan

and actual quality data for the

entire project or any module.

• Percent Defect Free

• Defect Density/Page

• Defect Density/KLOC

• Defect Ratios

52
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Quality Summary -2

TSP form SUMQ displays key plan

and actual quality data for the

entire project or any module.

• Development Time Ratios

• Inspection and Review Rates

• A/FR (Cost of Quality Ratio)

• Phase Yields

53
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Quality Summary -3

TSP form SUMQ displays key plan

and actual quality data for the

entire project or any module.

• Process Yields

• Defect Injection Rates

• Defect Removal Rates

54
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

QA Quality Review in the TSP

QA is a stakeholder in these quality reviews:

• Launch process management review meeting

• Weekly meetings

• Inspections

• Cycle, phase, and project postmortems

• Management/customer status meetings

55
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Leading Indicators

TSP has many leading indicators for managing software quality.

• planning for poor quality indicators

• process and measurement quality indicators

• product quality indicators

The following material gives examples of plan and actual

• review and inspection rates.

• development time ratios.

• Quality Profiles and the Process Quality Indices.

56
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Review and Inspection Rates

Review and inspection rates are generally correlated to yield.

0

10

20

30

40

50

60

0-
25

50
-7

5

10
0-

12
5

15
0-

17
5

20
0-

22
5

25
0-

27
5

30
0-

32
5

35
0-

37
5

40
0-

42
5

45
0-

47
5

>50
0

Code Review Rate - LOC/Hour

P
e
rc

e
n

t
w

it
h

 G
re

a
te

r
Y

ie
ld

50

60

70

3319 code reviews

Yield %

57
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Development Time Ratios

Development time ratios compare time

spent in related activities and correlate

these ratios with low test defect

densities.

Examples

• designing and coding

• designing and design reviews

• coding and code reviews

Indicator Value

Design defect

injection rate

0.75/Hr.

Design review defect

removal rate

1.5/Hr.

Design/Design

Review time ratio

2

Coding defect

injection rate

2/Hr.

Code review defect

removal rate

4/Hr.

Code/Code Review

time ratio

2

Design/Code time

ratio (derived from

TSP data)

1

58
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Component Quality Profile

The component quality profile is an early warning indicator consisting

of five risk factors that indicate the potential for post unit test defects.

Design/code time ratio

Code/review

time ratio

Static analysis

or compile

quality

Unit test

quality

Design/review

time ratio

59
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Interpreting the Component Quality Profile

Component 5 Risk Factors

Design/Code Time

Code Review Time

Compile D/KLOCUnit Test D/KLOC

Design Review Time

Inadequate design

review time results in

design defects escaping

to test and production.

60
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

System Quality Profile Example

The Quality Profile may be applied to the entire system or any part.

In this example, only 14 defects were found during system and user
acceptance testing out of 1336 defects found in 28 KSLOC.

Quality Profile for Assembly SYSTEM

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Plan

Actual
Plan

Actual

Quality Profile for Assembly SYSTEM

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Plan

Actual

Actual

System Quality Profile Previous Release System Quality Profile

61
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

The Process Quality Index

The process quality index (PQI) provides a quality figure of merit for

every system element.

To calculate PQI, multiply the profile dimensions to produce a

composite value that considers

• compile and unit test defect levels

• design and code review times

• time spent in design

Before test entry, PQI indicates the likelihood that a system element

will have subsequent defects.

Values above 0.4 are considered to be good.

62
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

PQI vs. Post-Development Defects

0

5

10

15

20

25

0 0.1 0.2 0.4 0.5 0.6

PQI Values

P
o

s
t-

D
e
v
e
lo

p
m

e
n

t

D
e
fe

c
ts

/K
L

O
C

0.3

63
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

QA and the TSP Quality Indicators

Quality Profile for Assembly 1

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 2

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 3

0

0.2

0.4

0.6

0.8

1
Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 4

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 5

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 6

0

0.2

0.4

0.6

0.8

1
Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

PQI = 0.97 PQI = 0.88 PQI = 0.71

PQI = 0.59 PQI = 0.15 PQI = 0.04

64
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Defects Found in System Test by QA

Quality Profile for Assembly 1

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 2

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 3

0

0.2

0.4

0.6

0.8

1
Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 4

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 5

0

0.2

0.4

0.6

0.8

1

Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 6

0

0.2

0.4

0.6

0.8

1
Design/Code Time

Code Review Time

Compile Defects/KLOCUnit Test Defects/KLOC

Design Review Time

PQI = 0.97 PQI = 0.88 PQI = 0.71

PQI = 0.59 PQI = 0.15 PQI = 0.04

Test defects = 0 Test defects = 0 Test defects = 0

Test defects = 0 Test defects = 1 Test defects = 3

65
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Summary

We can no longer rely on testing as the principal means of improving
the quality of software systems.

To get a quality product out of test, we must

• establish a quality ethic at the individual level

• plan for and measure quality at each step

• use disciplined processes that emphasize early defect removal

The role of QA must change from a ―test-in quality‖ focus to a ―build-in
quality‖ focus where quality plans and data are used by QA and the
development teams to manage quality throughout the process.

66
Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Questions?

For more information contact:

Jim Over

+ 1 412-268-7624

jwo@sei.cmu.edu

