=== Software Engineering Institute | Carnegie Mellon ©2010 Carnegie Mellon University

Key Message

Society depends on software.

As software professionals we have an obligation to produce reliable,
secure software.

The methods exist to achieve this goal, but they aren’t widely used.

Software quality professionals should help shift the profession from its
ad-hoc, “test-in quality” mindset, towards a measured, disciplined,
“build-in quality” approach.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Team Software Process (TSP)

TSP is a process that is specifically designed for
software teams.

It's purpose is to help teams
plan their work
negotiate their commitments with management

manage and track projects to a successful
conclusion

produce quality products in less time

achieve their best performance without the “death
march” ending

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Quality Improvements at Microsoft

Background information
Post code complete defects

two consecutive releases of

the same system Phase Version | Version
2.4 2.5
same six month schedule |)
ntegratlon 237 4
same seven member team Test
similar functionality produced System Test 473 10
User
TSP used on release 2.5 Acceptance 153 3
Test
Total 1072 17

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Quality Improvement at Intuit

From data on over 40 TSP teams, Intuit has found that

sixty percent fewer defects after code-complete
post code-complete effort is 8% instead of 33% of the project

standard test times are cut from 4 months to 1 month or less

TSP Development

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Quality and Work-Life Balance

Finding and retaining good people is critical to long-term success.

Intuit found that TSP improved work-life balance, a key factor in job
satisfaction.

Results at Intuit: Improved Work-Life Balance

* Half as many weekend source check-ins
(<3%)

* Reduced $ on dinners as measured by PSS -
“Pizza Slices Served”

12,000 pizza slices

served last year —

\AS . .
~30 pizza slices
this year
TSP helped improved employee work life balance Source: Intuit

- - - R Efficiency, Quality, and Agility
Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Quality Performance

In a study of 20 projects in 13 organizations TSP teams averaged 0.06 defects per thousand
lines of new or modified code.

Average Defect Density of Delivered Software

8 _
7 1
6 -
5 -
4 -
3 -
2
0 L _—
CMM CMM CMM CMM CMM TSP
Level 1 Level 2 Level 3 Level 4 Level 5
® Defects | 624 | 473 | 228 | 105 | 0.6
per KLOC

Source: CMU/SEI-2003-TR-014

_—— R Efficiency, Quality, and Agility
Carnegie Mellon

=== Software Engineering Institute

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?
What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality
throughout development and testing?

What data should teams collect?
How is the data used by development teams and QA?

What leading indicators can be used to identify quality problems early in
development?

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Software Industry Quality Performance

The quality of software products is worse than
most other hi-tech products.

Many important software products have 1 to 2
defects per thousand lines of code, or higher.

operating systems
communications systems

database systems

Application software is usually worse.
Depicted above: Linux system crash

screen on an Airbus entertainment
system

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Software Industry Quality Strategy

The software industry is the only modern high-tech industry that relies
heavily on testing to remove defects.

Many software defects are found in or after test when defect removal
costs are the highest and the methods are the least effective.

This strategy results in defective products and unnecessary rework that
Inflates development costs by 30% to 40% or more.

This strategy is also a principal cause of unexpected delays, system
failures, and software security vulnerabilities.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Software Quality Practice

Formal inspections are not widely used.
Peer review by another developer is the most common review practice
Often only the “critical” code is reviewed or inspected.

Inspections aren’t measured or managed to improve effectiveness.

Quantitative quality management is not common practice.
Quality plans are generally qualitative not quantitative.
Defects generally aren’t counted before test or code inspection.

Quality cannot be managed or tracked before testing begins due to a
lack of plans and data.

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

To Engineer is Human®

Software engineering is the art of turning
ambiguous requirements into precise instructions.

On average, most software developers inject one
defect in every 7 to 12 lines of code.

Typically 20% to 25% of these defects escape into
system testing where they will take 1 to 2 days each
to find and fix.

* To Engineer is Human: The Role of Failure in Successful Design, by Henry
Petroski.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Risk of Poor Quality

Computers are involved in nearly every
aspect of our lives.

While computers are very reliable, software
IS not.

The risk of loss of life or property is
Increasing due to software in

medical and healthcare systems
financial systems

network and communications systems
aircraft and air traffic control systems

power generation and distribution
systems

=== Software Engineering Institute | Carnegie Mellon

"If GM had kept up with technology
like the computer industry has, we
would all be driving twenty-five
dollar cars that got 1,000 miles to
the gallon.” — Bill Gates

"If GM had developed technology
like Microsoft, we would all be
driving cars ...that for no reason
whatsoever would crash twice a
day“— General Motors

Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

The Cost of Poor Quality

Without reviews or inspections a 50,000 Software Development Cost
LOC system has

M Development Costs M Testingand Rework

20+ defects/KLOC at test entry
that is 1000+ defects

at the typical 10+ hours per defect,
that is 10,000+ programmer hours to
find and fix

The cost of removing these defects is
about 5 programmer years, or nearly
half the cost of developing 50,000 LOC.

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Why Testing Isn’t Enough

Overload
Configuration Hardware Untested — paths in
\ & failure the unsafe region
(shaded red)
/) | System
Unexpected _p €
condition P | attack
7

J

/'/

//'
Resource /
contention Operator
error

Data error

Efficiency, Quality, and Agility

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Software Quality Management

IBM’s Dr. Harlan Mills said, “How do you know that you’ve found the last
defect in system test?”

“You never find the first one.”

If you want a quality product out of test, you must put a quality product into
test.

How do you put a quality product into test?

Measure and manage quality at every step, from requirements through
system test.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Early Defect Removal Strategy

1000

900

800

700

600

500

400

300

200

100

Defects Removed in Phase

e

Requirements
Inspection

Design Review Code Review Unit Test System Test
and Inspection and Inspection

=== Software Engineering Institute | Carnegie Mellon

Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?
What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality
throughout development and testing?

What data should teams collect?
How is the data used by development teams and QA?

What leading indicators can be used to identify quality problems early in
development?

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Commitment to Quality

“The system test engineers became
convinced that TSP was worthwhile when
they realized that they were going from
tracking down software bugs in the lab to
just confirming functionality. Our first
project: certified with ten times increase in
guality with significant drop in cost to
develop. Follow-on project: certified with
NO software defects delivered to system
test or customer.”

“My first TSP-based team recently
finished their system test. They had
three system test defects in 7400 lines of
new code. No defects were code- or
design-related; they were either install or
documentation— each of which took
about five minutes to fix. System test
took less than five percent of the overall
project effort.”

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Catch-22

To use new methods, software professionals must believe the methods
will help them do better work.

To believe that, they must have used the methods.

To break this conundrum, TSP has a course where professionals

use new methods to write several small programs

plan, measure, track, and analyze their work

They then learn from their own data that the new methods work.

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Learning to Develop Software

In computer science and software engineering education,
the emphasis is on technical knowledge and individual performance.
evaluation emphasizes code that runs, not how the student got there.

the prevailing ethic is to code quickly and fix the problems in test.

Developers then use these same practices on the job resulting in
missed commitments
lengthy testing schedules

buggy software

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Personal Software Process

The PSP is a process for structured personal tasks.

Developers learn PSP in a hands-on course where they use a defined and
measured process to estimate, plan, track, and manage quality.

This leads to
better estimating, planning, and tracking
protection against over-commitment

a personal commitment to quality

The training provides the self-convincing evidence of the benefits that
developers need to use these methods in practice.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Learning Stages

Team Software
Process

*Teambuilding
*Risk management
*Project planning and tracking

PSP2

PSP2.1

Design templates

*Code reviews
/ *Design reviews |

PSP1

*Test report

*Size estimating

PSP1.1

*Task planning
* Schedule planning

PSPO

*Current process
*Basic measures

PSPO.1

*Coding standard
*Process improvement proposal
*Size measurement

Introduces quality
management and design

Introduces estimating and
planning

Introduces process discipline
and measurement

Developers write one or more programs at each PSP level

=== Software Engineering Institute

Carnegie Mellon

Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

PSP Effort Estimating Accuracy

40
PSP 0O
20 -
Majority are under-estimating
0 - 1
-200% -100% 0% 100%
40
: PSP 1
Balance of over-estimates and under- |
estimates
0 1
-200% -100% 0% 100%
Much tighter balance around zero

=== Software Engineering Institute

-200%

Carnegie Mellon

-100% 0%

Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

100%

Compile and Test Defects - from PSP Training

250 810 developersg
//_\
8 200 7= \ —— 1st Quartile
< 150 S —— 2nd Quartile
S 100 < \ 3rd Quartile
‘g 50 . N >— —— 4th Quartile
—_ R
—
0 — Defect
| | | | | | | | | reductlon
) > o A o) O Q 1Q: 80.4%
Q@O’ Q@Q Q@o’ Q\OQ Q@Q Q@Q Q\OQ Q@Q Q@% \00'}' 2Q: 79.0%
3Q: 78.5%
4Q: 77.6%

PSP Assignment Number

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PSP Design Time Results

Time Invested Per (New and Changed) Line of Code

1.4

- PSP1 PSP2

1.0 A

0.8 T e Design
—&—— Code

06 - —&— Compile

—— Test

oy — \,/E\ﬂ/
0.2 A \\'\-\
] \-\'_'\- 298 developers

00 T T 1 1 1 T T
0 1 2 3 4 5 6 7 8 9 10 11

Mean Minutes Spent Per LOC

Program Number

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Quality and the Team

Quality doesn’t happen by accident.

Quality software is possible only when every member of a development
team makes a personal commitment.

To build a high-quality product they must
be properly trained and motivated
understand their personal quality data
have control of their process and plans

have the proper data to track quality

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?
What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality
throughout development and testing?

What data should teams collect?
How is the data used by development teams and QA?

What leading indicators can be used to identify quality problems early in
development?

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Building Quality Products

PSP
< J
Quality Self-directed
practices teams |
J >
Measurement Coaching
Accurate
pans

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Management Styles

The principal management styles have been:

Frederick Taylor Peter Drucker

Body Management Task Management Knowledge management
People as oxen that must People as machines. People as individuals. The
be driven, directed, and Management knows the ~ knowledge worker knows the
motivated through fear. best way to get the work best way to get the work

done. The workers done. Management

follow. motivates, leads, and

coaches.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Software Team Management Styles

Traditional team Self-directed team

The leader plans, directs, and The team members participate in

tracks the team'’s work. planning, managing, and tracking their
own work.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Sharing the Team Management
Responsibilities

Project Management Roles

Planning manager — responsible for tracking the plan.

Quality manager — responsible for tracking the quality plan.

Process manager — responsible for ensuring process discipline
and for process improvement.

Support manager — responsible for ensuring that support
needs are met and for configuration management.

Technical Roles

Customer interface manager — responsible for the interface to
the customer or customer representative.

Self-directed team roles Design manager — responsible for the design practices and
quality.

Eight pre-defined roles distribute traditional : : : :

project management responsibilities across the Implementation manager — responsible for implementation

team. practices and quality.

All team members have traditional roles, e.g. Test manager — responsible for test practices and quality.

developer, tester, etc.

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Coaching Role

The coach
. trains and facilitates the adoption of team-based practices
.- works with the team leader to build the team

.- Observer that uses data to guide the team

Team Leader vs. Coach

The team leader’s job is to use the
team to build the product.

The coaches job is to use the project
to build the team.

——

Tiger Woods and his coach Hank Haney.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Working Together to Improve Product Quality

QA

Coach

Role
Mangers

High Quality Products

Efficiency, Quality, and Agility

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

Planning Accuracy and Quality

Most software projects are underestimated and are therefore late
before they start.

When projects are running behind schedule, managers and developers
will abandon the process and look for shortcuts.

hurry through design
code quickly and deliver to test

rush through test and fix only the most critical bugs

Without reasonably accurate plans, quality suffers.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Guidelines for Improving Plan Accuracy

Create a conceptual design as the basis for the estimate.

Estimate size first, then effort, to reduce estimating bias.

Use historical data for size and effort estimates to further reduce bias.
Estimate in detail to further reduce cumulative error.

Use historical data to estimate resource availability.

Make and use a gquantitative quality plan to reduce the risk of schedule
delays caused by “buggy” software.

Do workload balancing.
Good plans are dynamic, plan early and often.

The best plans are made by the people assigned to do the work.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Self-directed Team Planning: The TSP Launch
Process

1. Establish
Product and
Business
Goals

2. Assign Roles

and Define
Team Goals

3. Produce
Development
Strategy

4. Build Top-
down and
Next-Phase
Plans

5. Develop

the Quality
Plan

6. Build Bottom-
up and
Consolidated
Plans

=== Software Engineering Institute

7. Conduct 9. Hold
Risk Management
Assessment Review

8. Prepare
Management Launch

Briefing and Postmortem
Launch Report

The TSP launch process produces
necessary planning artifacts, e.g. goals,
roles, estimates, task plan, milestones,
quality plan, risk mitigation plan, etc.

The most important outcome is a
committed team.

R Efficiency, Quality, and Agility
Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Quality Management Practices

TSP incorporates several quality management practices
planning for quality
yield management
capture/recapture

defect prevention

Quality is measured and tracked throughout the process.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Quality Planning

Quality guidelines are used during Quality Guideline Benchmark Value
TSP planning to Review rate 200 LOC/Hr.
estimate defects injected Design injection rate 0.75/Hr.
_ Design review removal rate 1.5/Hr.
make a plan for their removal — .
Design inspection removal rate 0.5/Hr.
Design review/inspection yield 70%
Estimates are based on historical code Injection rate il
defect densities or, injection rates and | £°de review removal rate Al
phase yields Code inspection removal rate 1/Hr.
Code review/inspection yield 70%
Unit test removal rate 3/Hr.
Quiality indicators are then calculated | Unittestyield 50%
from these data and used to track plan Eép_etC;edtdefect density Lo
: . . nit Tes <
vS. actual quality during execution. Integration Test < 0.5/KLOC
System Test < 0.2/KLOC
Acceptance Test <0.1/KLOC

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Yield Management

Every process phase has the potential to inject new defects.

There are many techniques for finding and fixing these defects.
walkthroughs, reviews, and inspections

manual and automated testing tools

Think of these techniques as defect removal filters

The cleanest software is produced by using multiple filters.
test-only process yield: less than 99%

multi-stage defect filter process yield: 99.9% to 100%

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

TSP Process with Defect Removal Filters

) High-Level)
Requirements > _ » Implementation » System Test
Design
Requirements High-Level Implementation System Test
Launch Design Launch Launch Launch

Produce
Technical
Artifacts (Code)

Produce
High-Level
Design

System

Produce
Requirements
Specifications

Produce
Detail Design

Personal Personal /_____

Review

Analysis

Inspection Inspection/ _ _“t—

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon e
’ © arnegie Mellon University

Capture-Recapture

The capture-recapture method
uses sampled data to estimate
populations.

It can be used to estimate the
defects in a product.

A = Defects in test A

B = Defects in test B

C = Defects common to A and B

Est. total defects = A*B/C

Total found = A+B-C

Est. total remaining = A*B/C — (A+B-C)

—— = = - o Efficiency, Quality, and Agilit
=== Software Engineering Institute | Carnegie Mellon S ’

© 2010 Carnegie Mellon University

System Test and Defect Prevention

What is the typical response when a defect is found in system test?
The defect is reported.
Someone is assigned to find and fix it.

When fixed the module is checked back in for testing.

System test yields are low (~50%), so system test defects get special
treatment in the TSP.

Every defective module is re-inspected.

A defect prevention process is invoked if defects are found during or
after system test.

Each defect is analyzed to prevent future escapes.

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Topics

How is software quality managed today?
What motivates and convinces software teams to manage quality?

What methods should software teams use to manage quality
throughout development and testing?

What data should teams collect?
How is the data used by development teams and QA?

What leading indicators can be used to identify quality problems early in
development?

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The TSP Measurement Framework

-~
- 4
j— P
- 'y ’
Lo, o o"'o
F
/0/ 70 ,04
y o , / ‘o,
@ ’ " |
~ ’
- “.
Size

Software Engineering Institute ‘ Carnegie Mellon

Four direct measures apply to all
processes and products

Estimates made during planning

Directly measured by team members
while working

The data are used to track project
status and to analyze and improve
performance.

Direct measures, integrated into a
measurement framework, provide
flexibility.

Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Schedule

Schedule is the most commonly used project measure.

Schedule accuracy depends on granularity.

TSP schedule granularity is in hours, not days, weeks, or
months.

TSP Task Planning Template - Form TASK Total Plan Hours Total Actus
Hame Prazad Perini a4
Team PSP Ghost Reminder:
Date 2732004 Eztimated Hours can be entered manually - OR - calculated based on Ezstimated Si
It Size and Rate are present, this fizld will be recalculated when you Update Task
Cycle ¢
&
Generate Update Task L% g 2 ﬁ p
Task List and Schedule & T |3 E = g % B ﬁ ﬁ
s E‘ = | & E - ar fa) = | & w
@ E= 0 o F= =) c c c = =
Aszembly Phase |Task g E L% E E & ﬁm ﬁm ﬁm E E
tain Form DLODIMEP Main Form DLD Inspection =& PP 300 LOC 2000 14 1.0 1.5 3M02003 15 50 3702002
hain Form CODEINSP Main Form Code Inspection SA PP 300 LOC 2000 145 1.0 1.5 3M02003 15 485 3M002002
Fitter CObject CODEINZP Fitter Ohject Code Inspection =& PP 300 LOC 2000 14 1.0 1.5 3M02003 15 3.2 1/220200z
Taszk Panel Control |DLDINSP Task Panel Control DLD Inspection Mk, PP 250 LOC 2000 1.3 1.0 1.3 3M0/2003 15 0.0 H72002
Task Panel Control |(CODEINSP Task Panel Control Code Inspection Mk, PP 250 LOC 2000 1.3 1.0 1.3 3M02003 15 0.0 31002002
ProfileUserList aspx DLDINSP Profilel)serList aspx DLD Inspection PP, WY 1010 LG | 2000 5.1 1.0 51 INTR2003 16 200 2402002
ProfileUzerList aspx CODEINSP Profilelzerlist aspx Code Inspection PP, WY 1010 LOC 2000 51 1.0 51 3MT2003 16 44 227i200:

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

~— © 2010 Carnegie Mellon University

Time

Time is a measure of time on task.

The TSP time measure is task hours,
l.e. the time spent on a project task,
minus interruption time.

TSP team members record their time

TSP Time Recording Log - Form LOGT
as they work, not at the end of the Name Prasad Pern Dato 232004
Team PSP Ghost
Cycle
day, week, or month.

Aszembly ‘ Phaze ‘ Task ‘ Date | Start ‘ Int. ‘ Stop ‘ Deta ‘
OEM-ChangeR PLAN OEM-ChangeRequest-7 PLAN 031303 154510 16:22:43 3TE
QEM-ChangeR HLD OEM-ChangeRequest-7 HLD 031303 165308 173040 iTa
CEM-ChangeR DLD OEM-ChangeRequest-7 DLD 031303 173048 180255 322
OEM-ChangeR DLD OEM-ChangeRequest-7 DLD 031303 185520 19:54:35 293
QEM-ChanoeR DLDR OEM-ChangeRequest-7 DLDR 031403 10:00:43 10:31:58 b I
QEM-ChangeR DLDIMNEP OEM-ChangeReguest-7 DLDINSP 03703 143736 131356 363
OEM-ChangeR DLD OEM-ChangeRequest-7 DLD 03703 154618 16:00:51 146
QEM-ChangeR DLD OEM-ChanoeRequest-7 DLD 031703 161136 163554 216
OEM-ChangeR DLDR OEM-ChangeReguest-7 DLDR 03M7M03| 164649 17:04:20 17.5
QEM-ChangeR CODE DEM-ChangeRequest-7 CODE 03703 17:45:47 184723 E16
QEM-ChangeR CODE DEM-ChangeRequest-7 CODE 031703 185051 19:01:18 105
OEM-ChangeR CODE OEM-ChangeReguest-7 CODE 03M8M03| 093854 1010035 3.7
CEM-ChangeR CR OEM-ChangeRequest-7 CR 03M3/03 11:50:46 12:04:33 138
QEM-ChanceR CR OEM-ChanoeReouest-7 CR 031803 1235336 1329014 333

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

~— © 2010 Carnegie Mellon University

Size

Size is a measure of the magnitude of the
deliverable, e.g. lines of code or function points, e .
pages. - o ’

TSP size measures are selected based on their ‘o ‘e 4
correlation with time. . ~o .

o P -
TSP Size Summary - Form SUMS R
Mame Frasad Ferini
H Team FSP Ghost
TSP also uses size data to Date 272004
. Cycle Actual Size n
normalize other measures £ 5
=)
5 o %
P 5 =
track progress s : | 3 g | E
a T = o = T b [—
Azzembly, Sub-Assembly, @ [= w o n =] 2 g z T
=] ar Part hame @ Parent Assembly Mame - 5 i 8 E I & g E
25 DeliveryJEMPartvalidate-Files & OBM MO0 Integration RS PP LOC i i 0 4a9 0 483 489
26 DeliveryOEMPartList(SGL) A |OER MOO Integration RSM PP [LOC 0 u] 0 E13 0 E13 E13
27 AppDataExchangelresteSG A OEM MOO Integration RSM PP |LOC 0 0] 0 175 0 175 178
25 AppDataErchangecetiSaL) | A OBM MO0 Integration RS PP LOC] a 0 153 0o 183 153
29 CEM MO Integration RS L SYETEM Ml Text Pages 0 o] 0 4 0 4 4
30 Build Doc: for OEM MOO Team A OEM MOO Integration RSM - NK Text Pages 1] a 1] a 1] a 1] .

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Defects

Defects are the measure of quality in the TSP.

Any change to an interim or final work product, made
to ensure proper design, implementation, test, use,
or maintenance, is a defect in the TSP.

DefeCtS are Iogged as th ey TSP Defect Recording Log - Form LOGD
Name Frasad Perini Date /372004
are found and fixed e —
. Cycle
Fizx Fix
Date Mum | Type Azsembly Injected Removed Time | Ref. Description
1MB2003 15 200 OEM User Groups |CODE CR 5.0 Mizzing ' ' between parameters
1ME2003 E7 70 OEM User Groups (CODE CR 5.0 Permizzions don't match for objects and itz sttribu
D efe Ct tr aC k| n g take S p I aC e 1/23/2003 B& 70 OEM User Groups DLD CODEINSP 5.0 SRFile, SRProperty objects need create permission
112302003 5z 70 OEM Uszer Groups |DLD CODEMNSP 1000 Permissions don't match for objects and its attribod
11232003 70 70 OEM User Groups |CODE CODEMNEP 2.0 211-212 Wrang Sproc (IGrpapp should be iCade)
th rou g h out th e p rocess. 172412003 71| 70 OEM User Groups | CODE uT 250 Yyrong Database Name for Userdccount Object
14242003 72 70 OEM User Groups DLD urt 30 Exdra Attribute name in UserAccount Ohjectttrib
152412003 73 0 AppDataExchanges DLD DLDR: 1.0 Granted permissions to OEMUsers instead of Phoe
102402003 T4 40 AppDataExchanges DLD DLDR 5.0 Step names in Logic don't match with error table
102472003 75 40 ApnDataExchangeG DLD DLDR 1.0 Change record to |s&ctive in step 2
14242003 7B 70 AppDataExchanges DLD DLDR: 1.0 Caolumn names were not specified in step 4

Efficiency, Quality, and Agility

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

What the Measurement Framework Provides...

Sample of Derived Measures
Estimation accuracy (size/time)
Prediction intervals (size/time)
Time in phase distribution

Defect injection phase distribution
Defect removal phase distribution
Productivity

%Reuse

%New Reusable

Cost performance index

Planned value

Earned value

Predicted earned value

Defect density

=== Software Engineering Institute

Sample of Derived Measures (continued)
Defect density by phase
Defect removal rate by phase
Defect removal leverage
Review rates

Process yield

Phase yield

Failure cost of quality
Appraisal cost of quality
Appraisal/Failure COQ ratio
Percent defect free

Defect removal profiles
Quiality profile

Quiality profile index

o Efficiency, Quality, and Agility
Carnegie Mellon

© 2010 Carnegie Mellon University

I . t S 1 TSP Quality Plan - Form SUMQ
Quality Summary - pamelCaro ;
Team P3F Ghost
Assembly SySTEM E]
SYSTEM Percent Defect Free Actual
. In Compile G62.3%
TSP form SUMQ displays key plan in Unit Test 53.6%
. In Build and Integration Test 73.9%
and actual quality data for the In System Test — 08.6%
. . In Acceptance Test 100.0%
entire project or any module. in Product Life —100.0%)
Defects/Page Plan Actual
- Percent Defect Free REQ Inspection 0.00 0.00
. HLD Inspection 0.00 0.00
. Defect Density/Page
Defects/KLOC Plan Actual
: CLD Review 2.33 9.36
- Defect Densﬂy/KLOC DLD Inspection 477 6.54
. Code Review 19.19 10.33
. Defect Ratios Compile 492 3.43
Code Inspection 421 579
Unit Test 1.20 425
Build and Integration Test 0.48 0.89
Systemn Test 0.36 0.04
Total Development 4375 4110
Acceptance Test 0.00 0.00
FProduct Life 0.36 0.00
Total 44 11 4110
Defect Ratios Plan Actual
CLD Review/lUnit Test 6.94 2.20
Code Review/Compile 3.90 3.01

Efficiency, Quality, and Agility

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

u al it Su m m ar _2 TSP QUE"W Plan - Form SUMQ
y y Name|Carol 1
Team P3F Ghost
Assembly 5ySTEM E]
Development Time Ratios Plan Actual
. REQ Inspection/Requirements 0.00 0.00
TSP form SUMQ dlsplays key plan HLD Inspection/High-Level Design 0.02 0.03
. Detailed Design/Code 1.09 1.57
and actual quality data for the DLD Review/Detailed Design 0.45 032
. . Code Review/Code 0.46 0.41
entire project or any module.
Inspection/Review Rates Plan Actual
- Development Time Ratios REQ Inspection 0.00 0.00
HLD Inspection 0.00 0.00
. ; DLD Review 148.45 22553
- Inspection and Review Rates DLD Inspection 111.08 143.76
Code Review 156.86 272099
. - i A A 2
. A/FR (COSt Of Qua“ty Rat|0) Code Inspection 114.69 13231
. AFR 2.82 349
. Phase Yields
Phase Yields Plan Actual
Flanning 0% 0%
Requirements 0% 0%
System Test Plan 0% 0%
REC Inspection 50% 0%
High-Level Design 0% 0%
Integration Test Plan 0% 0%
HLD Inspection G0% 0%
Detailed Design 0% 0%
DLD Review 55% 47%
Test Development 0% 0%
DLD Inspection 70% 2%

Efficiency, Quality, and Agility

%% Software Engineering Institute | CarnegieMellon

© 2010 Carnegie Mellon University

u al |t Su m m ar 3 TSP Quality Plan - Form SUMQ
y y Name|caral =|I
Team P3F Ghost
Assembly sysTEM E]
Process Yields Plan Actual
. % Before Compile T6% 65%
TSP form SUMQ displays key plan % Before Unit Test 96% 28%
. % Before Build and Integration Test 97 % 98%
and actual quallty data for the % Before System Test 98% 100%
. . % Before Acceptance Test 99% 100%
entire project or any module.
Defect Injection Rates (Defects Injected Per Hour) Plan Actual
- Process Yields o 2 e
Requirements 0.25 0.00
. . Systern Test Plan 0 0.00
- Defect Injection Rates REQ Inspection 0 0.00
High-Level Design 0.25 0.38
Integration Test Plan 0 0.00
Defect Removal Rates LD mepection 5 o3
Detailed Design 1 1.35
DLD Review] 0.03
Test Development 0 0.00
DLD Inspection 0 0.01
Code 2 2 36
Code Review 0 0.01
Compile 0.3 0.00
Code Inspection] 0.00
Unit Test 0.067 0.00
Build and Integration Test 0 0.06
Systemn Test 0 0.00
Defect Removal Rates Plan Actual
Flanning 0.00 0.00
Requirements 0.00 0.00

Efficiency, Quality, and Agility

Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

QA Quality Review in the TSP

QA is a stakeholder in these quality reviews:
Launch process management review meeting
Weekly meetings
Inspections
Cycle, phase, and project postmortems

Management/customer status meetings

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Leading Indicators

TSP has many leading indicators for managing software quality.
planning for poor quality indicators
process and measurement quality indicators

product quality indicators

The following material gives examples of plan and actual
review and inspection rates.
development time ratios.

Quality Profiles and the Process Quality Indices.

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Review and Inspection Rates

Review and inspection rates are generally correlated to yield.

Percent with Greater Yield

3319 code reviews

60
50 .
m Yield %
40 1 \/\/‘\ 50
30 _ = — — 60
S . \/\—\/\/ - - - =70
20 ~ o o T — ~ . \ 4
. ¢ ~ A . - . ; \ /”\ — P - /
10 7 = Y z = “ — ya—
. SN - ' d \ = . '
O 'I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I\ 1 1 1 1
B OO0 O 0 N0 0 M 0 H 0 O
&Y @Q:\ 05\9’ o Qfl:" Qﬂj\ A U U MY

Code Review Rate - LOC/Hour

=== Software Engineering Institute

Carnegie Mellon

Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Development Time Ratios

Development time ratios compare time

spent in related activities and correlate Design defect 0.75/Hr.
theseT _ratios with low test defect injection rate
densities. Design review defect 1.5/Hr.
removal rate
Examples Bes!gn/ DESIEI 2
eview time ratio
designing and coding Coding defect 2/Hr.
designing and design reviews injection rate
coding and code reviews Code review defect 4/Hr.
removal rate
Code/Code Review 2
time ratio
Design/Code time 1
ratio (derived from
TSP data)

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Component Quality Profile

The component gquality profile is an early warning indicator consisting
of five risk factors that indicate the potential for post unit test defects.

Design/code time ratio

Design/review Codelreview
time ratio time ratio
Unit test Static analysis
quality or compile
quality

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Interpreting the Component Quality Profile

Component 5 Risk Factors

Inadequate design
review time results in
design defects escaping

to test and production. ~__ \
P~ Design Review Time \ Code Review Time

Unit Test D/KLOC Compile D/KLOC

Design/Code Time

—— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

System Quality Profile Example

The Quality Profile may be applied to the entire system or any patrt.

In this example, only 14 defects were found during system and user
acceptance testing out of 1336 defects found in 28 KSLOC.

Design/Code Time Design/Code Time

1
0.8
0.6
0.4

Design Review Time Code Review Time Design Review Time Code Review Time
0.2
Plan
Actual Actual
Unit Test Defects/KLO Compile Defects/KLOC Unit Test Defects/KLOC Compile Defects/KLOC
System Quiality Profile Previous Release System Quality Profile

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

The Process Quality Index

The process quality index (PQI) provides a quality figure of merit for
every system element.

To calculate PQI, multiply the profile dimensions to produce a
composite value that considers

compile and unit test defect levels
design and code review times
time spent in design

Before test entry, PQI indicates the likelihood that a system element
will have subsequent defects.

Values above 0.4 are considered to be good.

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

PQI vs. Post-Development Defects

25

20 ¢

15 -

Defects/KLOC

Post-Development

| +‘.“ o |
0 0.1 0.2 0.3 0.4 0.5 0.6

PQI Values

Efficiency, Quality, and Agility

=== Software Engineering Institute ‘ Carnegie Mellon

© 2010 Carnegie Mellon University

QA and the TSP Quality Indicators

Quality Profile for Assembly 1

Design/Code Time

Design Review Time Code Review Time

Unit Test Defects/KLOC Compile Defects/KLOC

PQI = 0.97

Design Review Time

Quality Profile for Assembly 2

Design/Code Time

ZA

\ /N
o\ .
ompile Defects/KLOC

Unit Test Defects/KLOC
PQI = 0.88

Code Review Time

Quality Profile for Assembly 4

Design/Code Time
1

PQI = 0.59

Quality Profile for Assembly 3

Compile Defects/KLOC

PQI =0.71

Design Review Time Code Review Time

Unit Test Defects/KLOC

Design Review Time

Quality Profile for Assembly 5

Design/Code Time

Code Review Time

Unit Test Defects/KLOC Compile Defects/KLOC

PQI =0.15

Quality Profile for Assembly 6

Design/Code Time

7N

Unit Test Defects/KLOCY—————= Compile Defects/KLOC

PQI = 0.04

Design Review Time Code Review Time

=== Software Engineering Institute ‘ Carnegie Mellon

Efficiency, Quality, and Agility

© 2010 Carnegie Mellon University

Defects Found in System Test by QA

Quality Profile for Assembly 1

Test defects =0

Design/Code Time

ign/Code Ti
Design Review Time //’E \\ Code Review Time
WA/
/\
/ N\
/[N\
Unit Test Defects/KLOC A

- Compile Defects/KLOC

PQI = 0.97

Quality Profile for Assembly 2

Test defects =0

Design/Code Time

Unit Test De

ompile Defects/KLOC

PQI = 0.88

Unit Test De

Quality Profile for Assembly 3

Test defects =0

Design/Code Time

Quality Profile for Assembly 4

Test defects =0

Design/Code Time
1

Quality Profile for Assembly 5

Test defects = 1

Unit Test De

Quality Profile for Assembly 6

Test defects = 3

Unit Test De

Design/Code Time

=== Software Engineering Institute ‘ Carnegie Mellon

Efficiency, Quality, and Agility

© 2010 Ca

rnegie Mellon University

Summary

We can no longer rely on testing as the principal means of improving
the quality of software systems.

To get a quality product out of test, we must

establish a quality ethic at the individual level
plan for and measure quality at each step

use disciplined processes that emphasize early defect removal

The role of QA must change from a “test-in quality” focus to a “build-in
quality” focus where quality plans and data are used by QA and the
development teams to manage quality throughout the process.

Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

Questions?

For more information contact:
Jim Over
+ 1 412-268-7624

jwo@sei.cmu.edu

— Efficiency, Quality, and Agility

=== Software Engineering Institute | Carnegie Mellon

© 2010 Carnegie Mellon University

