

Build Agile Knowledge - Participate in

a sprint!

[Review]
1

Presenters:
Almir Drugovic and Terri Spratt

About the Presenters

[Review]
2

Almir Drugovic (adrugovic@gmail.com; LinkedIn) has over fifteen years of
professional and technical experience, with over ten years experience managing
large organizational initiatives and technology projects. Currently, Almir is
responsible for enterprise adoption, scaling and continuous improvement of
Agile at Nokia Location & Commerce, and is focused on helping the company
transition to Agile. Almir is one of the few Agile practitioners to have hands-on
experience in a large scale Agile adoption effort, and his specialties include
Waterfall to Lean and Agile transition, Business Process Management, large scale
program management, business process reengineering, and maximizing value
delivery by implementing Engineering Practices.

Terri Spratt (LinkedIn) is a professional Agile coach, trainer and facilitator, and
is also Agile Transition Manager at NOKIA in Chicago. She has over 15 years of
software development experience, and specializes in helping organizations
transition from waterfall to Agile/Scrum, including implementing the many
cultural changes necessary to make a successful transition. Terri is experienced in
coaching teams to implement, continually improve and sustain Agile best
practices for the long term. She is also a professional facilitator and trainer,
leading workshops and classes that help teams and organizations move to a
higher level of Agility.

mailto:adrugovic@gmail.com
http://www.linkedin.com/in/almirdrugovic
http://www.linkedin.com/in/terrispratt

Our Backlog

[Review]
3

• Why Agile *
• How Agile is Quality and Risks
• Measuring Value *
• Where to Start
• How to Scale Agile to the Enterprise Level *
• Role of Engineering Practices in Agile Success
• Co-located Teams in a Global Organization
• The Role of Managers in an Agile Environment
• Evolutionary and Emergent Architecture
• How Coaching Evolves as Agile Scales
• Evolving the Culture of an Organization
• Implementing Agile in Non-IT Areas
• Sustaining Agile for the Long Term
• Agile & Lean *
• Sprint Types *
• More about Objective, Epic and Sprint *
• The story behind Agile Manifesto *

Agile and Lean

Lean Principles
Agile has its roots in the Lean Manufacturing Principles developed by Toyota

[Review]

Lean Principles

Eliminate Waste. Build Quality In

Create Knowledge

Defer Commitment

Deliver Fast

Respect People

Improve the System

5

Seven Wastes

1. Partially done work

2. Extra features

3. Relearning

4. Handoffs

5. Task switching

6. Delays

7. Defects

The story behind Agile Manifesto

Manifesto for Agile Software Development

Unification Under the Agile Manifesto

That is, while there is value in the items on
the right, we value the items on the left more.

Many Adaptive Methods unified under the term "Agile" in 2001 when seventeen
people involved in such practices as XP, Scrum, DSDM, FDD, and other

methods gathered to create the Agile Manifesto

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

Ron Jeffries

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

7

What Is Agile: The Manifesto’s Twelve Values

The Agile Manifesto also contains twelve detailed values

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

2. Welcome changing requirements, even late in development. Agile processes harness change for
the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity--the art of maximizing the amount of work not done--is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts
its behavior accordingly.

8

Sprint Types

Sprint Types
Although the Sprint was originally defined to result in an increment of

software, the model can be applied to all stages of enterprise software

development

Setup Sprint

The Setup Sprint includes activities which

need to happen between the completion

of N5/N4 and the start of the first N3

Feature Sprint:

Spikes - Research, testing, or a proof-

of-concept of an unknown, in order to

reduce risk and refine estimates

Environment – Activities to set up the

environment for N3 such as procuring

hardware or setting up servers

Schedule – Securing team resources

required for N3

Feature Sprint
(focus of this module)

The Hardening Sprint consists of

two major activities:

Integration of components,

architecture, and infrastructure

Preparation of software for an

internal Release (light hardening) or

production Release (heavy

hardening)

Hardening Sprint

The Feature Sprint contains all

activities to define in detail, build, and

test a unit of software which can be

demoed or released for hardening

Build

Test

Define

10

Why Agile

Why Agile
The Agile methodology strives to continuously deliver small increments of

functionality with business value. This gives continuous visibility and
continuous delivery of value.

Verification

Implementation

Design

Requirements

:

Software

:

Software

:

Software

:

Software

:

Software

:

Software

:

Software

:

Software

4
Documents

444
Documents

:
Unverified Code

:
Software

Month 2 Month 4 Month 6 Month 8 Start

1
2

Why Agile (2 of 2)
Agile has many benefits beyond speed-to-market

Key Benefits

Delivery of working increments of software in short,

frequent iterations (“Sprints”)

Greater adaptability to changing market conditions

through re-evaluation of requirements at the

beginning of each Sprint

Higher quality through early, frequent testing

Heavy user involvement and frequent demos to

confirm that Product Management, R&D, and DMO

are aligned

Greater visibility throughout the development process

1. Greater ROI with
Incremental
Return

2. Speed to Market
with Greater
Adaptability

3. Lower Cost
4. Reduced Risk
5. Higher Quality
6. Higher Customer

Satisfaction
7. Greater Visibility
8. Higher Employee

Satisfaction

Value (per industry
standards)

13

All five success factors are essential to a successful Agile transition

- Courtesy of Jorgen Hesselberg

How to Scale Agile in Large
Companies

What Problem Are We Trying to Solve?

Teams are finding it difficult to manage dependencies across teams.

 Teams working on dependent products or features are sometimes receiving
conflicting priorities from different Product Owners.

 Teams are working at different cadences, making it difficult to integrate and test
products developed by multiple teams.

 System level visibility not always accessible outside of teams, making longer term
planning and cross-team coordination difficult.

16

Solution Release Train (by Dean
Leffingwell):

Create Release Programs:

Plan releases at program level

Iterate and integrate on same cycle

across dependent teams

Need for Two Levels of Planning
 Plan Releases based on Value Stream

 Release theme sets overall objective

 Global alignment and prioritization

 Three to six months planning horizon; “Plan of Intent”

 Prioritized Epic sets define proposed/estimated content

 High visibility and confidence near term (Release “next” and
“next +1”).

 Lower visibility longer term

 Plan Iterations at the Story Level
 Alignment and prioritization

 Four to six weeks planning horizon

 Teams identify user stories for iterations

 Adapt and adjust at each iteration

17

 Plan of Intent

Sp
ri

n
t

1

Sp
ri

n
t

2

Sp
ri

n
t

3

H
ar

d
e

n
in

g

Sp
ri

n
t

5

Sp
ri

n
t

6

Sp
ri

n
t

7

H
ar

d
e

n
in

g

Sp
ri

n
t

8

Agile Framework
Portfolio

 Product Vision Product Vision Product Vision

Product Backlog
Prioritization

Product Backlog
Prioritization

Product Backlog
Prioritization

 Product Vision Product Vision

Sp
ri

n
t

9

H
ar

d
e

n
in

g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

P
la

n
n

in
g

Steering
Committee

Release
Management

Team
(PM,PMO,

DMO, R&D)

Potentially Shippable
Increment

T e a m 3

T e a m 1

T e a m 2

Preparation for next PSI Preparation for next PSI Preparation for next PSI

The Train is a
group of agile

teams
cooperating

on
continuous
delivery of a
long-lived
end-user

value stream.

Sp
ri

n
t

4

Sp
ri

n
t

P
la

n
n

in
g

Sp
ri

n
t

1
0

Release
Planning

Release
Demo

Backlog
Grooming

Release
Planning

Release
Demo

Backlog
Grooming

P
o

t
e

n
t

ia
ll

y

S
h

ip
p

a
b

le

P
r

o
d

u
c

t

St
o

ri
es

 +
 S

u
st

ai
n

m
en

t

Release
Planning

Release
Demo

Backlog
Grooming

P
o

t
e

n
t

ia
ll

y

S
h

ip
p

a
b

le

P
r

o
d

u
c

t

St
o

ri
es

 +
 S

u
st

ai
n

m
en

t

P
o

t
e

n
t

ia
ll

y

S
h

ip
p

a
b

le

P
r

o
d

u
c

t

Potentially Shippable
Increment

Potentially Shippable
Increment

- Courtesy of Dean Leffingwell (www.leffingwell.org)

http://www.leffingwell.org/

19

Planning Release Plan – Program Alignment

Advertising Vertical

LCMS-LRO Vertical

LCMS-LRO Release
Team

Advertising Release
Team

MAP Vertical

MAP Release
Team

Verticals
Alignment

Verticals
Alignment

 Release Management
Team is responsible for
managing the Release
Plan.

 Cadence and timing of
the Release Train are
determined based on
business needs, technical
complexity and size of the
vertical.

 Release Team is
responsible for aligning
goals across verticals.

The Value Proposition

In Waterfall, value is realized at the completion of the development process.

The final value may be lower due to requirements “aging.”

The Agile Value Proposition

Agile ROI

Verif. Implementation Design Reqmts

In Agile, value is realized incrementally.

The overall value may be higher because requirements are re-evaluated

after each Sprint to deliver the highest priority ones.

Waterfall ROI

21

Greater ROI with Incremental Return

• Agile has a greater ROI by delivering features of greater value through frequent customer feedback rather than less

accurate long-term forecasts

• Likewise, features which are of lower value are not built

• Agile has incremental return, which allows value to be realized even if further development is cancelled or put on hold

• See upcoming section on lower cost...

The Agile Value Proposition
Speed to Market with Greater Adaptability

• Agile brings software to market faster with greater adaptability by delivering software incrementally through short Sprints.

This gains a competitive advantage, greater responsiveness to threats, and better adaptability to changing market

conditions.

• Agile brings software to market faster with greater adaptability by allowing code to be more easily added through XP

practices like simple design, refactoring, a system metaphor, coding standards, pair programming, and collective code

ownership.

• Agile brings software to market faster with greater adaptability by finding and fixing defects early in the process (when they

can be corrected faster) using XP practices like test-driven development, automated testing, and continuous integration.

Agile Adaptability Waterfall Adaptability

With fixed requirements and gated processes, the ability to adapt decreases

significantly at the end of each phase.

Scrum practices are employed to re-evaluate requirements at the beginning

of each Sprint.

XP practices are used to create code which is clear, simple, and adaptable.

1 This can be further broken down into “Competitive Advantage” and “Better Responsiveness

to Threats” and “Changing Market Conditions.”

Verif. Implementation Design Reqmts

22

The Agile Value Proposition

Agile Cost of Fixing an Early
Defect

Lower Cost

• Agile lowers cost by minimizing the need for heavy documentation, handoffs, and change control processes because teams

are aligned by software product rather than functional silo, and collaborate continuously.

• Agile lowers cost through early testing, which detects defects when they are significantly less expensive to fix.

• Agile lowers cost by investing in detail Just-In-Time. Features which have a lower likelihood of being built receive little

investment beyond tracking and prioritizing at a high level.

Estimates vary, but a common rule of thumb is that as a defect in specs or

code moves from one phase to the next, the cost of correcting it increases

by a factor of 10.

By using short Sprints, also known as “Define-Build-Test” cycles, errors in

requirements, designs, and code are detected and fixed early in the process.

Waterfall Cost of Fixing an Early Defect

Verif. Implementation Design Reqmts

23

The Agile Value Proposition

Continued

Reduced Risk

• Agile reduces the risk of building low or no-value features by re-prioritizing them at the beginning of each planning cycle.

• Agile reduces the risk of making a large investment in a product which will ultimately have low value. Delivering faster

means “failing faster” to know when to cut your losses.

• Agile reduces the risk of disconnects between what is needed and what is built through frequent demos.

• Agile reduces the risk of missing a delivery date through the typical bottlenecks which result from testing late in the process.

• Agile reduces the risk of building upon incorrect forecasts and assumptions through continuous requirements inspection and

validation.

• Agile reduces risk resulting from employee turnover with such XP practices as simple design, a system metaphor, coding

standards, pair programming, and collective code ownership.

• Agile reduced risk associated with new technology, unknowns, and assumptions through XP “Spike Solutions.”

24

The Agile Value Proposition

Reduced Risk (continued)

Agile Risk

By freezing requirements early in the process and testing late, a greater

number of functional and technical defects are not discovered until the end.

Through up-front testing, functional and technical defects are discovered

early, lowering risks.

Waterfall Risk

Verif. Implementation Design Reqmts

25

The Agile Value Proposition

Higher Quality

• Agile brings higher quality by incorporating testing throughout the development process to confirm that requirements were

properly defined and code was written without defects.

• Agile brings higher quality through continuous integration to detect code integration issues early.

• Agile brings higher quality through additional XP practices such as simple design, refactoring, a system metaphor, coding

standards, and pair programming.

Higher Customer Satisfaction

• Agile leads to higher customer satisfaction because customers are able to change their minds as a system moves from the

abstract to the real.

• Agile leads to higher customer satisfaction because customers receive more of what they most want but are unable to

articulate or predict up front.

• Agile leads to higher customer satisfaction because they feel engaged through frequent demos and releases.

26

The Agile Value Proposition
Greater Visibility

• Agile brings greater visibility through short release cycles and frequent demos of working software. The development

process is less of a “black box” to customers and the business.

• Agile brings greater visibility through continuous business involvement. They revisit the big picture frequently, reprioritize

requirements during the Release and Sprint planning meetings, and stay in touch with daily progress and issues through the

Scrum meetings.

• Agile brings greater visibility of progress and risks through “Information radiators” such as the Scrum Board and Burndown

Charts.

Waterfall projects have high visibility and ceremony up front.

Visibility drops off as the project enters the implementation “black box.”

Typically, the business disengages.

Visibility picks back up once there is working software and perceived risk to

the delivery date.

Agile has relatively consistent visibility.

Because of its lower ceremony and self-organizing nature, visibility is not

quite as high as the start and end of Waterfall projects.

Waterfall Visibility

Verif. Implementation Design Reqmts

Agile Visibility

27

The Agile Value Proposition

Higher Employee Satisfaction

• Employees are more satisfied and motivated when they receive a general plan with reasonable goals and the authority to

use their creativity and collective skills to meet those goals.

• Employees are more satisfied when they are able to use their “in the trenches” experience to improve their processes.

• Employees are more satisfied when their own skills are developed to become leaders rather than those positions being filled

externally.

28

Agile Methodology

Characteristics of an AgileTeam

30

The Agile Team is a small, cross functional team that is created at the

beginning of the project and remains intact till the end.

Project Team Project Team Project Team

Agile Teams are

• Small (5-9 people)

• 100% dedicated

• Cross-functional

• Cross-trained (“T-shaped” skills)

• Self-empowered

• Motivated

• Collaborative

• Cohesive

• Collocated

• Consistent

• Rewarded as a team

Stakeholders
• Sponsor

• Subject matter

experts

• Etc.

The Agile Team

31

There are 7 to 9 people full time on a team. They include everyone required to take a

product from start to finish.

Scrum Team

ScrumMaster

Delivery Team :

 - Application architect

- Developers

- Testers

- Analyst

- And others as needed…

Product Owner

Disruptions

The User Story
The User Story is the basic building block of the system. It is the initial

requirement specification.

The User Story specifies who, what, and why from the user’s perspective.

 Because it does not tell how, it opens a conversation with the Delivery Team
about how the functionality can best be implemented, leveraging the team’s

collective expertise.

 As a <user>

 I can <do something>

 so that <user value received>

32

Tips

If you require a reference application

or data visualizer to present or

validate data, don’t forget to include

it as an Epic.

Epics
Epics are large stories, stories that are too big to be implemented in one Sprint.

Epics define large blocks of functionality. Epics are generally defined before
Stories.

The Epic specifies what (Description), for whom
(Users), and why (Value) and can be tied directly to

business value (Business Value Points).

33

Requirements Breakdown Structure

34

The Objective is broken down Epics. Epics are broken down into Stories.

Rules of Thumb:
• Epics should not span

releases. If an Epic is too big
to fit in one release, it should
be broken down and offer
clear business value.

• Remember: if the project
were to stop at the end of
any release, all Epics
developed should be “Done”
and shippable.

• A Story should take no more
than half a Sprint to
complete. Otherwise, it
should be broken down
further into smaller Stories.

Objectives
(PRD)

Epic Epic

Story Story Story Story

Epic

Story Story

• Epics and Stories are organized in backlogs.
• Backlogs are prioritized lists.
• Epics and Stories are implemented according

to their priority.

Verification
Conditions
describe the

business logic

The Sprint Cycle

35

The Sprint cycle is the fundamental time management block of Agile.

The potentially
shippable increment

of software is
production-worthy, but
not necessarily released

Product Backlog
Items (PBIs) express
requirements and are

typically in Story
format1

The Sprint
Backlog

contains the
tasks to deliver

the PBI’s

Sprint Pre-Planning Release

Planning
Sprint

1 The Story format originated with Extreme Programming and has gained popularity

with Scrum as the expression of Product Backlog Items (PBIs)

Sprint

Planning

Meeting

Sprint

Review

Meeting

 Task 1

 Task 2

 Task 3

 ...

Sprint Backlog,

Verification Conditions

:

Working

increment

of software

(with documentation)

Work Product Backlog

Sprint

Pre-Planning
 Verify that...

 Verify that...

 Verify that...

As a…

I can…

so that…

Sprint

Retro-

spective

Release

Planning

Daily

Scrum

2

week

iteration

Release Planning

Artifacts

