
© 2011 All rights reserved.

An Introduction to Continuous Delivery

rolf russell
continuous delivery practice lead

conan the deployer

getting it in front of users quickly

http://code.flickr.com

constant flow of new features into production

incremental release of small changes

time
small feature chunks

 Why

build the right thing

every business idea is

a hypothesis until you

get user feedback

corollary: don’t waste money on the wrong thing

Never 45%

Rarely 19%

Sometimes 16%

Often 13%

Always 7%

Standish Group: how often features are used

constant user connection

by releasing everyday:

your users can be delighted by new stuff all the time

your users get the feeling you are reacting to what they want

ability to move quickly

react to the market

explore new revenue streams

better aligned people

development & operations close to the business

IT no longer perceived as
the bottleneck

reliability & stability

John Allspaw: “Ops Metametrics” http://slidesha.re/dsSZIr

time

uh oh
problem happens

wheeew
problem solved

TTR (time to recover)

time to figure
out cause of

problem

time to
fix

problem
>>

adapted from John Allspaw

progress

 How

fast, automated feedback on the
production readiness of your applications
every time there is a change

whether code, infrastructure, configuration or database

Jez Humble

continuous delivery

software always production ready
releases tied to business needs, not IT constraints

minimize the lead time from idea to live

concept to cash

time
small feature chunks

systems thinking is [a philosophy] based on the
belief that the component parts of a system can best
be understood in the context of relationships with
each other and with other systems, rather than in
isolation.

value stream mapping

process tool for improving the flow from a customer request
to the fulfillment (concept to cash)

emphasis is on improving the whole not just the parts

uses quantitative data to identify waste and inefficiency

originally developed by toyota to assist in the improvement of

manufacturing and supply-chain processes

value stream mapping

requirement
discovery

lead-time 4 wks 4 wks 6 wks 1 wk 4 wks 1 wk 1wk

requirement
definition

release

uat integration

testing
automated
testing

coding

value-add-time 2 days 1 wk 4 wks 2 days 1 wk 1 day 4 hrs

complete
 &
accurate 30% 50% 25% 40% 80% 90% 80%

value stream mapping

requirement
discovery

lead-time 4 wks 4 wks 6 wks 1 wk 4 wks 1 wk 1wk

requirement
definition

release

uat integration

testing
automated
testing

coding

value-add-time 2 days 1 wk 4 wks 2 days 1 wk 1 day 4 hrs

complete
 &
accurate 60% 50% 25% 40% 80% 90% 80%

while (true) {	
	if (change checked into vcs) then build & test	
	sleep 60

}	

step 1 - continuous integration

Cu
rre

nt
St

ate

Developer build

Release plan
Iteration kick-off

Check-in

CI fast

CI slow

Dry run Sig
n-o

ff

Dep
loym

ent

Prod
uct

ion

Manual testing

Regression testing

Release build

Automated

Functional Tests

Implement

planning

Batch
size

Measurement & Feedback

Map your
deployment pipeline

are you ready to change?
© ThoughtWorks, Inc 2011

full production pipeline

faster feedback

full production pipeline

automated implementation of your system’s
 build, deploy, test, approval processes

!   visibility
!   traceability
!   compliance

treat everything like code

check in, automate, test in CI, promote in deployment pipeline

•  database: DDL & static data

•  deployment automation

•  infrastructure/configuration mgmt

•  monitoring configuration

treat servers like cattle, not pets

adhere to the test pyramid

Adapted from Mike Cohn (Automated Test Pyramid)
and Lisa Crispin & Janet Gregory (Agile Testing)

P1 P2

G2 G3G1 G4

P3 P4 P5

G5 G6

B1 B2

G1

G1

P1

P1
B1

P2

B1

P1-2

G2

G2

P3

G2

P3

B2

P4

B2

G3

P3
G3

G3

P4

P4 P5

P4-5

G4

G4 G5 G6

P2

Professor Plum

Reverend Green

Mainline

trunk based development

branches discourage refactoring
branches delay integration and hide risk

merging wastes time and is tedious

trunk based development

feature toggles let you deploy incomplete features
turned off

branch-by-abstraction lets you make architectural
changes

consistency from development to production

accidental
inconsistency

necessary
inconsistency >>

deployment process

environment configuration

testing tools

pull itops onto the delivery team

sit together: biz, dev, qa & sysadmin

share KPIs for stability and change

same story wall and iterations

“in production”? “live”?

what does “in production” mean today?

what does “live” mean? is it a binary state?

how can we take advantage of shades of grey in “live”?

concerns

reliability & stability
compliance & traceability

releasing 10 times/day
•  don’t need to, just keep your code always production releasable

complexity of my systems
•  its about continuous improvement. start with low hanging fruit

it will take investment
•  yes it will, but it will also start paying dividends quickly

homework

how long would it take your organization to
get a one line code change into production

using the normal process?

Mary & Tom Poppendieck Implementing Lean Software Development

Q&A

Thank you!

extra credit: lean startup movement

approach to managing disruptive innovation

goal of startups is to learn
•  true for everyone early in the innovation cycle

learning should not be adhoc
•  be rigorous & use the scientific method
•  hypothesis -> experiment -> analysis

